
Problem 2: The Stirling Cycle and Regeneration  
Some heat engines use regeneration to improve their efficiency. Regeneration means the return 

to the working body of a part of heat that is transferred to the cooler. We will call this amount of re-
turned heat "the amount of heat to be recovered" and we will denote it as QR. Different schemes of re-
generation are possible: 1) transmission of QR through a special heat exchanger (regenerator); 
2) transmission of QR to the working body of the second heat machine connected "in parallel" to the 
first machine; 3) transmission of QR through a heat pump (such devices are also called refrigeration 
units - they work as heat machines with a "reverse" cycle). 

Part I: Parallel Heat Machines with Regeneration  
Let's consider the second scheme. For a Stirling engine the problem of low efficiency is very 

significant, so the use of regenerators is critical for such engines. The cyclic process in the working 
body (WB) of a Stirling engine can be described with good accuracy as a cycle consisting of two iso-
chores and two isotherms. 

Let’s have two Stirling engines connected in parallel. They get heat from a common heat reser-
voir and do useful work on the same object (e.g. piston or shaft), but work in counter phase. When one 
of these engines performs positive work in the process of isothermal expansion, the second one goes 
through the isothermal compression stage, and vice versa. Regeneration is done by controlled heat ex-
change. The first engine working body (WB1) with temperature TH corresponding to the "hot" iso-
therm, at the beginning of isochoric cooling, is brought into thermal contact with the working body of 
the second engine (WB2) having at that moment the temperature of the "cold" isotherm TC at the be-
ginning of isochoric heating. Heat exchange takes place at a constant volume and during heat exchange 
WB1 cools down to some temperature HT ¢  and WB2 heats up to some temperature CT ¢ . At the same 
time heat exchange between WB1 (or WB2) and other bodies can be neglected. Then the thermal con-
tact is broken, and WB1 cools down giving the heat to the environment while WB2 continues heating 
getting the heat from the heater.  In the second half of the cycle the processes are repeated, only the 
WB1 and WB2 change roles.  The WB1 and WB2 consist of the same amounts of gas, the gas may be 
considered ideal. 

Let temperature TH be higher than TC by 28%H C
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Qr R  the "regeneration factor", where 

Q+ is the total heat obtained in one cycle by the WB of the engine that operates with regeneration. 

1.1. At what values of HT ¢  and CT ¢  coefficient r will be the maximum possible for such regeneration 
scheme? Answer the question by expressing the sought temperatures in terms of TH and TC. 

1.2. What is the maximum possible value of r? Write down the answer as a formula (that uses the 
quantities specified in the problem statement), and calculate it as a percentage accurate to a 
tenth. 

1.3. Find the efficiency of the engine with maximum regeneration if the useful work equals 
8
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of the total work performed by WB1 and WB2 (i.e. 
8
11 =- k  gives the part of specified work 

lost on mechanical friction in the engine components, etc.). Write down the answer as a formu-
la that uses the quantities specified in the problem statement, and calculate it in percentage 
rounding it to the nearest whole (if necessary). 



Part II: Unusual Substance  
Let some very unusual substance be at our disposal. We have the following information about 

this substance:  

• its heat capacity in isobaric process Cp depends on absolute temperature ( )pC p T= b × ; the 
work performed by this substance and the amount of heat obtained by it in the isobaric process 

are related as QA
2
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-= ;  

• its heat capacity in isochoric process depends on temperature 3( )VC V T= g × , and the equation 
of isochore is constlp T× = , where l is a constant exponential factor; 

• if 0®T  then volume and internal energy of this substance tend to zero at any finite pressure, 
and internal energy grows with temperature. 

2.1. Write down the isobaric process equation for this substance in temperature-volume coordinates. 
2.2. Write down (to a positive constant factor) the caloric equation of state of this substance, i.e. the 

equation connecting the internal energy with temperature and volume ),( TVUU = . 

2.3. Write down (using the same positive constant factor) the thermal equation of state of this sub-
stance, i.e. the equation connecting pressure with temperature and volume ),( TVpp = . 

Note: as for any thermodynamic system, the thermal and caloric equations of state for this 

substance satisfy 
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2.4. Find the internal energy of this substance in terms of its pressure and volume. Write down the 
adiabatic equation of this substance in pressure-volume coordinates. 

Part III: Regeneration using a Heat Pump  
Let's consider another method of regeneration, when part of the work produced by the WB of 

heat engine is directed to the WB' of a heat pump. Due to this work, the heat pump returns a part of the 
heat given to the cooler by the WB during its cooling stage back to the WB during its heating stage. 
The scheme of operation of such a device is shown in the figure. 

 
Let it contain a WB, which consists of constant amount of the same ideal gas as in Part I of the 

problem, performing the Stirling cycle with the same parameters (now we know that the ideal gas used 
as the WB is three-atomic). At the same time, the WB' is a constant amount of substance considered in 
Part II of the problem, which also performs the Stirling cycle. In this cycle, the ratio of the maximum 
absolute temperature to the minimum absolute temperature and the ratio of the maximum volume to 
the minimum volume are exactly the same as in the WB cycle. The efficiency of a heat pump is char-



acterized by its refrigerating factor CQ
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, which is the ratio of the heat taken away from the colder 

body to the work spent on the activation of the heat pump. 
3.1. Calculate the Stirling Cycle refrigerating factor with the substance from Part II and the parame-

ters given in Part I. Give your answer in percentage rounded to the nearest whole. 
3.2. Find the efficiency of an engine with this method of regeneration if the ratio of the amounts of 

substance is such that the regeneration factor 5,0=
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Possible Solution  
 

1.1. Let's consider the cycle of WB1. The amount of 
heat transferred from WB1 to WB2 during isochoric cooling 
can be related to temperature change )( HHVR TTCQ ¢-= ,  
where VC  is the specific heat of the working body at constant 
volume.  According to the statement of the problem, the same 
amount of heat is transferred by WB1 to WB2 during the iso-
choric heating )( CCVR TTCQ -¢= . From these equations we 
obtain CCHH TTTT -¢=¢- . Therefore, CHCH TTTT ¢+¢=+ . The 
total amount of heat received by each working body in one cy-
cle is HCHVTV ATTCQQQ +-=+=+ )(  because in the isothermal process the internal energy of 
ideal gas does not change, so TQ  is equal to work HA  done on the "hot" isotherm. Therefore, the re-
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heat exchange while cooling down to temperature HT ¢ , at the same time WB2 is heating to temperature 

CT ¢ . Therefore, in order to prevent the reverse heat flow, the requirement HC TT ¢£¢  must be satisfied. 

Since CHCH TTTT ¢+¢=+ , this requirement means that 
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1.2. This quantity is equal to 
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work is equal to the area under the process curve in pressure-volume coordinates, which is 
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. Thus, the maximum value of the regeneration factor in the proposed scheme 

is 0
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. One may note that the problem is correct only if 0h < d , which is 

natural because d is equal to the efficiency of the Carnot cycle with the same temperatures of the heat-
er and the cooler. 

1.3. When regeneration is used, the cycle work is the same and the heat generated by the heater 
during the cycle is reduced by +×= QrQR . Consequently, the efficiency of the engine with regenera-
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2.1. The amount of heat pQ  received by the substance during isobaric heating from temperature 

1T  to temperature 2T  can be calculated using heat capacity 
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cording to the problem statement, the substance performs work related to the volume change: 
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proportional to the change of the absolute temperature squared. Taking into account that 0| 0®®TV , 
we find the isobaric equation for this substance in the temperature-volume coordinates: 2 const.V T -× =  

2.2. It follows from the result of problem 2.1 that the pressure of the unknown substance is a 
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the change in the internal energy in this process is 2 2
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the amount of heat obtained in the isochoric process (when the work is not performed) is equal to the 

change of internal energy 
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that here too 0| 0®®TU , we come to the conclusion that the caloric equation of state looks like 

4( )( , )
4
VU V T Tg

= . Let's compare the two results obtained: since 

2 2
2 4 23 ( / ) ( ) ( / ) ( )

4 4 3
T V V TT T T V Vb g

º Þb º g
!

! , there must be a constant a, such that ( )V
V
a

g = , and 

then 
2

( )
3
Tx
V

a
b =! . It means that 

4

( , )
4
TU V T
V

a
= . Now it is clear from the problem statement that 

0a > . 

2.3. The relationship between the caloric and thermal equations of state leads to the equation: 
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In other words, 22
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- = - . It is easy to see that this requirement is satisfied by the function 

2( )
12

f x xa
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Note: Actually, it is clear that the general solution to the above differential equation is 
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= × - , where D is an arbitrary constant. However, the isochore equation has a form 

given in the statement only if 0=D . 

It should be noted that the pressure of our substance is always negative! This is very unusual for 
normal gases, but negative pressure may be observed in a condensed state within some range of the 
state parameters. Besides, the varieties of matter with similar equations of state are sometimes consid-
ered in inflationary cosmology (quintessence, generalized Chaplygin's gas). 



2.4. Using the results of 2.3 and 2.2, we find that pVVpU 3),( -= . The adiabatic equation is ob-
tained from the condition 0=+ dUdVp , wherefrom it follows that 
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3.1. The Stirling cycle for WBʹ in pressure-volume coordinates looks as shown in the figure. The iso-

thermal equation is 
4
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According to the problem statement, 
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The efficiency of the Stirling cycle for three-atomic ideal gas is calculated simply: the work pro-
duced in the cycle 1 2( ) ln( / )H CA R T T V V= n - , while the heat of the heater 
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3.2. When using regeneration, the WB-cycle efficiency remains the same, i.e. 
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